
 3

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 15, No 1

Sofia • 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2015-0001

α-Nearness Ant Colony System with Adaptive Strategies
and Performance Analysis

Jinqiu Lv1, Xiaoming You1, Sheng Liu2
1College of Electronic and Electrical Engineering, Shanghai University of Engineering Science,
Shanghai, 201620, China
2School of Management, Shanghai University of Engineering Science, Shanghai, 201620, China
Emails: weiganglvjinqiu@outlook.com yxm6301@163.com ls6601@163.com

Abstract: This paper proposes an improved ant colony system with adaptive
strategies, called α-AACS and considers its performance. First of all, we introduce
α-nearness based on the minimum 1-tree for the disadvantage of the Ant Colony
System (ACS), which better reflects the chances of a given link, being a member of
an optimal tour. Next, we utilize the adaptive operator to balance the population
diversity and the convergence speed and propose other optimizations for ACS.
Finally, we present an account of the experiments and the statistic-based analysis,
which clearly shows that α-AACS has a better global searching ability in finding
the best solutions and better performance in solution variation.

Keywords: Ant colony system, α-nearness; minimum 1-tree, lower bound, adaptive
strategy.

1. Introduction

The most important member of prototypical optimization problems is undoubtedly
Travelling Salesman Problem (TSP) [1], which has achieved great improvements.
Formally, TSP can be represented by asking for the circuit of minimum total weight
in a weighted, complete, undirected graph that visits each vertex exactly once and
returns to its starting point.

Ant Colony System (ACS) [2] is a novel kind of an intelligent algorithm,
which can be applied to TSP in a straightforward way. Besides, it is the successful

 4

heuristic algorithm for TSP. Ants are able to find good solutions for the shortest
path between the food source and the ant cave. They communicate via pheromone
to mark their trails in variable quantities. Artificial ants imitate the behaviour of ant
colonies to some extent. Although the first Ant Colony Optimization (ACO)
algorithm, Ant System (proposed by M. Dorigo in 1992, 1996), was found to be
inferior with respect to the state-of-the-art algorithms for TSP, it has provided
inspiration for a number of extensions that significantly improved performance.
These extensions include elitist AS, rank-based AS, MAX–MIN AS and ACS [2].
A great deal of scholars has devoted their researches and efforts in ACO. For
example, Ying Zhang and Lijie Li have adopted the Dual Nearest Insertion
Procedure to initialize the pheromone, integrated reinforcement learning through
computing the low bound by 1-minimum spanning tree, and combined Lin
Kerninghan local search [see 2]. G a n g H u et al. [3] have presented the binary ant
colony algorithm with controllable search bias which had a good search ability and
a high convergence speed. A new directed pheromone for representing the global
information of searching is defined by X i a n g p i n g M e n g et al. [4]. In [6] the
authors have presented an improved ant colony algorithm based on natural
selection, which employed the evolution strategy of survival of the fittest in natural
selection to enhance pheromones in paths whose random evolution factor was
bigger than the threshold of the evolution drift factor in each process of iteration.
Tianjun Liao and Thomas Stutzle proposed UACOR, a unified ACO algorithm for
continuous optimization, which allows the usage of automatic algorithm
configuration techniques to automatically derive new ACO algorithms [6].

This study presents a new ant colony optimization (α-AACS) which is
incorporated with 3-opt local search to improve the solution quality. The paper is
organized as follows. Section 2 provides a description of the proposed algorithm
with a new technique. Section 3 reports experimental comparisons and Section 4
comes to a conclusion.

2. Algorithm description

2.1. α-AACS framework

The framework of α-AACS is given as follows in a pseudo code.
Input: A TSP data
Set parameters;
Initialize Pheromones trails;
Compute a lower bound ;
while (termination condition not met) do
 Compute Heuristic information by the minimum 1-tree
Construct the solution by adaptive strategies
 Local search by 3-opt
 Update pheromones
end

 5

2.2. Computing the heuristic information by the minimum 1-tree

In the original ACS, when building a tour, ant k at the current position of city i
chooses the next city j to move according to the so-called pseudorandom
proportional rule, given by [2]

(1)
[]{ } 0arg max ,

 otherwise

if

,

k
il il il N q q

j
J

βτ η⎧ ∈ ≤⎪= ⎨
⎪⎩

where q is a random variable uniformly distributed in [0, 1], q0 (0≤q0≤1) is a
parameter, and J is a random variable selected according to the probability
distribution (with α = 1)

(2)
[] []

 if ,
k
i

ij ijk k
ij i

il ill N

p j N
α β

α β

τ η

τ η
∈

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= ∈
∑

where 1/ij ijdη = is a heuristic value that is available apriori, α and β are two
parameters which determine the relative influence of the pheromone trail and the
heuristic information, and Ni

k is the feasible neighbourhood of ant k when being at
city i, that is, the set of cities that ant k has not visited yet.

However, there is a certain risk that the application of this rule may prevent the
optimal solution from being found. If an optimal solution contains one link, which
is not connected to the several nearest neighbours of its two end cities, then the
algorithm will have difficulties in obtaining the optimum. Thus, we introduce the
concept of α-nearness [8] which better reflects the chances of a given link being a
member of an optimal tour.

Definition 1. A 1-tree for a graph G = (N, E) is a spanning tree on the node set
N\{1} combined with two edges from E incident to node 1. And a minimum 1-tree
is a 1-tree of minimum length.

Definition 2. Let T be a minimum 1-tree of length L(T) and let T+(i, j) denote a
minimum 1-tree required to contain the edge (i, j). Then the α-nearness of an edge
(i, j) is defined as the quantity

α(i, j) = L(T+(i, j)) − L(T).
Let β(i, j) denotes the length of the edge to be removed from the minimum

1-tree when edge (i, j) is added. Thus α(i, j) = c(i, j) − β(i, j). Then, as shown in
Fig. 1, if (j1, j2) is an edge of the minimum 1-tree, i is one of the remaining nodes
and j1 is on that cycle that arises by adding the edge (i, j2) to the tree, then β(i, j2)
may be computed as the maximum of β(i, j1) and c(j1, j2).

We use the algorithm as follows to compute α-values. Here, b and “mark” are
two one-dimensional auxiliary arrays, where array b corresponds to the β-matrix but
only contains β-values for a given node i, that is b[j] =β(i, j). Array “mark” is used
to indicate that b[j] has been computed for node i. The determination of b[j] is done
in two phases. First, b[j] is computed for all nodes j on the path from node i to the
root of the tree. These nodes are marked with i. Next, a forward pass is used to
compute the remaining b-values. The α-values are available in the inner loop.

 6

Fig. 1. β(i, j2) may be computed from β(i, j1)

for i=2:n do
 mark[i]=0;
end do
for i=2:n do
 b[i]=−∞;
 k=i;

while(k!=2) do
j=dad[k] //dad[k] denotes the father node of k.
b[j]=max(b[k], c(k, j));
mark[j]=i;
k=j;

end do
for j=2:n do

if j!=i
 if mark[i]!=i
 b[j]=max(b[dad[j]], c(j, dad[j]));
 end if
 α(i, j)=c(i, j)−b[j];
end if

 end do
end do
Next, the procedure of estimating the heuristic value by minimum 1-tree is

described in the following steps. Here ϕ is a positive constant parameter.
Step 1. Compute a minimum spanning tree for G’=(N\{1}, E) with the help of

Prim’s algorithm.
Step 2. Find a minimum 1-tree for G by adding the two shortest edges incident

to node 1 to the minimum spanning tree.
Step 3. Compute the nearness α (i, j) for all edges (i, j).

Step 4. 1/[(,)]ij i jη α ϕ= + .

 7

2.3. Computing of the lower bound to improve α-nearness

In the previous subsection, the α-values provide a good estimate of the edges’
probability of belonging to an optimal tour. The computational tests have shown
that the α-measure provides a better estimate of the likelihood of an edge being
optimal than the usual c-measure [8]. However, the α-measure can be improved
substantially by making a simple transformation of the original cost matrix. We use
the transformation based on the following equation [9]:
(3) ,ij ij i jd c π π= + +

where the vector ()1 2π π , π , , πn= … . The cost matrix C = (cij) is transformed to
D = (dij), i.e., an optimal tour for D is also an optimal tour for C. The length of
every tour is increased by 2 iπ∑ . Let Tπ be a minimum 1-tree with respect to D,

then its length ()L Tπ is the lower bound of the length of an optimal tour for D.

Therefore, ()π () 2 iw L Tπ π= − ∑ is the lower bound on the length of an optimal

tour for C. Now the problem is to find a vector ()1 2π π ,π , ,πn= … which

maximizes the lower bound ()π () 2 iw L Tπ π= − ∑ . When () ()0w wπ > , the
α-values computed from D are better estimates of the edges being optimal than the
α-values computed from C.

We use an iterative method of subgradient optimization [10] to maximize

()w π . The iterative equation is 1 1(0.7 0.3)k k k k kv vtππ + −= + + , where kv is a

subgradient vector in which ,
1 0v v− = and kt is a positive scalar, called the step

size. The subgradient vector is computed by 2,k
kdv = − where kd is a vector

whose elements are the degrees of the nodes in the current minimum 1-tree. This
method makes the algorithm strive towards obtaining minimum 1-trees with node
degrees equal to 2, i.e., minimum 1-trees transform tours. Fig. 2 shows the steps of
a subgradient algorithm for computing the maximum of ()w π .

Fig. 2. Subgradient optimization algorithm

 8

It has been proven [11] that w will always converge to the maximum of
()w π , if 0kt → for 0k → and kt = ∞∑ .

2.4. An adaptive operator

In (1), the parameter q0 determines whether the ants to make the best possible move
or to explore other paths by roulette selection. In other words, tuning the parameter
q0 allows modulation of the degree of exploration and the choice whether to
concentrate on the search of the system around the best-so-far solution or explore
other tours. Thus, we use the next equation to calculate the value of q0 in order to
prevent the algorithm from falling into a local optimum:
(4) 0 0(1) () ,q n q n c+ = +
where c is a positive constant parameter and the initial value of q0 is expressed as
q0(1).

Since q0 is an incremental value, at the early evolution it is a small value
which can increase the diversity of population, while at the later stage of evolution
it becomes a greater value in order to accelerate the convergence. The performance
of this operator will be demonstrated by the experiments in the next section.

2.5. 3-opt local search

The 3-opt neighbourhood consists of those tours that can be obtained from a tour by
replacing at most three of its arcs, making the lengths of the new tours shorter than
before. The candidate set is determined by the α-nearness in this paper and letting
the length of the candidate set be 5.

The removal of three arcs results in three partial tours that can be recombined
into a full tour in four different ways, as shown in Fig. 3.

Fig. 3. Four ways of 3-opt

 9

3. Experiments comparisons and statistics-based performance analysis

3.1. Experiments comparisons

To demonstrate the performance of the algorithm proposed, we conduct some
computer simulations on a collection of benchmark problems from TSPLIB [12]
and compare them with the known optimal solutions of other algorithms. For each
benchmark and each algorithm, the experiments are executed 30 times.

Table 1 compares the proposed α-AACS (with 3-opt), ACS with 3-opt and
ACS without 3-opt, using various TSP benchmark problems. Table 1 shows that: in
Eil51 and Kroa150 problems, α-AACS can obtain the optimal solution; in Kroa100
Kroa200 and Pr264 problems, α-AACS can obtain the solution which is very
similar to the optimal solution and the error can be approximated to 0; in the large-
scale problems Lin318, the error of α-AACS is 0.37%, which has been reduced by
about 7% compared to ACS.

Fig. 4 compares α-AACS (with 3-opt), ACS with 3-opt and ACS without 3-opt
using Kroa150 benchmark problem. The solutions generated by α-AACS and ACS
with 3-opt are very close, moreover Table 2 compares the time in which both
algorithms achieve similar quality solutions by running 500 iterations. Obviously,
the time that α-AACS spends is a little more than the time ACS with 3-opt spends.
Hence, the advantage of α-AACS is not obvious for small scale problems and it
could be even said that it has no advantage.

However, as shown in Fig. 5, the situation is different. It can be observed that
α-AACS can obtain the optimum and outperform the two other algorithms. Thus,
the results demonstrate the global searching ability of our algorithm in finding the
best solutions for large scale problems.

Table 1. Comparison of α-AACS (with 3-opt) with other algorithms
Benchmark problem Optimum Algorithm Near-optimum Error (%)

Eil51 426
α-AACS+3opt 426.21 0

ACS+3opt 431.17 1.21
ACS 438.74 2.99

Kroa100 21282
α-AACS+3opt 21285.44 0.016

ACS+3opt 21316.37 0.16
ACS 22384.64 5.18

Kroa150 26524
α-AACS+3opt 26524.86 0

ACS+3opt 26748.56 0.85
ACS 28155.86 6.15

Kroa200 29368
α-AACS+3opt 29369.41 0.0048

ACS+3opt 29834.05 1.59
ACS 30855.32 5.06

Pr264 49135
α-AACS+3opt 49139.68 0.0095

ACS+3opt 49729.52 1.21
ACS 52562.55 6.97

Lin318 42029
α-AACS+3opt 42185.91 0.37

ACS+3opt 42600.72 1.36
ACS 45164.35 7.46

 10

Table 2. Time comparison of α-AACS (with 3-opt) and ACS with 3-opt
by running 500 iterations

Benchmark problem α-AACS/s ACS with 3-opt/s
Eil51 12.657 3.534

Kroa200 53.751 15.456
Lin318 99.125 34.203

Fig. 4. Comparison of α-AACS (with 3-opt) with other algorithms using Eil51 benchmark problem

Fig. 5. Comparison of α-AACS (with 3-opt) with other algorithms, using Kroa150 benchmark problem

Table 3 compares the average length of the tours of the algorithm proposed in
the paper using various q0 (1) applied to different benchmark problems. As it can be
seen, when α-AACS uses the first q0 (1), all the average lengths are better than in
the other two situations for three benchmark problems. According to it, setting
q0 (1) = 0.5 will yield better solutions with respect to the TSP. Moreover, setting
q0 (1) = 0.5 also has the stability in finding the optimum. Fig. 6 shows an example

 11

of the comparison of α-AACS using different q0(1) for Kora200 benchmark
problem. Hence, the use of q0(1) = 0.5 in our algorithm is recommended to solve
the TSP.

Table 3. Comparison of the average tours of α-AACS using different q0
Benchmark problem Set1(q0(1)=0.5) Set2(q0(1)=0.4) Set3(q0(1)=0.3)

Eil51 429.16 431.25 431.25
Kroa100 21294.73 21342.56 21621.66
Kroa200 29377.54 29834.05 31273.36

Fig. 6. Comparison of α-AACS (with 3-opt) using different q0(1) in Kroa200 benchmark problem

3.2. Statistics-based performance analysis

In order to compare the difference between α-AACS (with 3-opt) and ACS+3opt
further, we have adopted the statistical index and performed some statistical tests.
The statistical index is the standard deviation [13]σ, which is defined as follows:

(5)
2

1

1 () ,
m

k
k

L
m

σ μ
=

= −∑

where Lk denotes the tour length generated by the k-th ant after the two algorithms
complete each iteration; μis the mean value calculated by equation (6).

(6) 1 ,

m

k
k

L

m
μ ==

∑

σ reflects the convergence speed of an algorithm. The less the σ value is, the better
the centrality of the solutions generated by all ants is. Fig. 7 shows the convergence
tendency of σ of the two algorithms. As it can be seen, the standard deviation σ of
α-AACS is always smaller than that of ACS+3opt, whereas σ of ACS+3opt
oscillates violently from the beginning to the end, which indicates that the path
length generated by α-AACS at each iteration has always better centrality compared
with ACS+3opt. After about 50 iterations, the standard deviation σ of α-AACS

 12

becomes small and stable. This is because the value of the parameter q0 is small at
the early stage which makes the ants explore new tours, and with q0 becoming
bigger the ants begin to concentrate on the best-so-far solution.

Fig. 7. Comparison of the convergence tendency of the standard deviationσ

4. Conclusion

This paper presents a new ant colony optimization called α-AACS algorithm for
solving the TSP. We introduce the minimum 1-tree’s concept, a method for
computing the lower bound to improve α-nearness and an adaptive operator which
can improve the solution quality. The experimental results show that the proposed
algorithm can yield a global minimum or a near global minimum to the traveling
salesman problem. According to the statistical tests, α-AACS has better
performance in solution variation and centrality of solutions. Hence, it is an
efficient algorithm for the TSP.

R e f e r e n c e s

1. K a r a p e t y a n, D. Lin-Kernighan Heuristic Adaptations for the Generalized Travelling
Salesman Problem. – European Journal of Operational Research, Vol. 208, 2011,
pp. 221-232.

2. Z h a n g, Y., L. L i. MST Ant Colony Optimization with Lin-Kerninghan Local Search for the
Traveling Salesman Problem. – ISCID, Vol. 166, 2008, pp. 344-347.

3. H u, G., et al. Binary Ant Colony Algorithm with Controllable Search Bias – Control Theory &
Applications, Vol. 28, 2011, No 8, pp. 1071-1080.

4. M e n g, X i a n g p i n g, et al. Ant Algorithm Based on Direction-Coordinating. – Control and
Decision, Vol. 28, 2013, No 5, pp. 782-786.

5. W u, H u a-f e n g, et al. Improved Ant Colony Algorithm Based on Natural Selection Strategy for
Solving TSP Problem. – Journal on Communications, Vol. 34, 2013, No 4, pp. 165-170.

6. L i a o, T., T. S t u t z l e, M. A. M o n t e s d e O c a, M. D o r i g o. A Unified Ant Colony
Optimization Algorithm for Continuous Optimization. – European Journal of Operational
Research, Vol. 234, 2014, pp. 597-609.

 13

7. H e l s g a u n, K. An Effective Implementation of the Lin-Kernighan Traveling Salesman
Heuristic. – European Journal of Operational Research, Vol. 126, 2000, No 1, pp. 106-130.

8. H e l d, M., R. M. K a r p. The Traveling-Salesman Problem and Minimum Spanning Trees – Oper.
Res., Vol. 18, 1970, pp. 1138-1162.

9. H e l d, M., R. M. K a r p. The Traveling-Salesman Problem and Minimum Spanning Trees.
Part II. – Math. Programming, Vol. 1, 1971, pp. 16-25.

10. P o l j a k, B. T. A General Method of Solving Extremum Problems. – Soviet Math. Dokl., Vol. 8,
1967, pp. 593-597.

11. University of Heidelberg. TSPLIB website [EB/OL].
http://www. iwr. Uni-heidelberg. de/groups/comopt/software/TSPLIB95/tsp

12. T a n, G., D. M a m a d y. Real-Time Global Optimal Path Planning of Mobile Robots Based on
Modified Ant System Algorithm [C]. ICNC’2006, pp. 204-214.

13. S t u t z l e, T., H. H o o s. MAX-MIN Ant System and Local Search for the Traveling Problem –
In: Proc. of IEEE International Conference on Evolutionary Computation, 1997, pp. 309-315.

